

Clinicopathologic Analysis of Periampullary Cancers as Predictors of Survival Outcome: A Hospital Based Study

Pragyan Lisha Panda¹, Dilleswari Pradhan², Asaranti Kar^{3*}, Priyadarshini Biswal², Pradeep Kumar Behera², Pranati Pradhan³

¹PG, ²Assistant Professor, ³Associate Professor,

Department of Pathology, S.C.B. Medical College, Cuttack, Odisha, India.

ABSTRACT

Introduction: Periampullary carcinomas comprise tumors arising from head of pancreas, ampulla of Vater, distal common bile duct and duodenal papilla. In spite of similar perioperative outcome, the survival and biological behavior varies greatly in different patients. Hence this study was undertaken to determine the significant predictors of long term survival by analysis of different clinicopathological variables.

Material and Methods: This study was carried out in Department of Pathology and Surgery of S.C.B. Medical College, Cuttack over a period of two years and four months. All cases of periampullary carcinoma subjected to surgery were included in the study. Total 17 clinicopathological parameters were collected in each case and analysed with respect to survival outcome.

Results: There were total 20 cases of periampullary carcinoma included in the study. The overall survival rates at 3 years was 52%. Jaundice, CA 19-9, lymph node metastasis, stage at presentation were found to be independent and better predictors than site of origin.

INTRODUCTION

Periampullary carcinoma arises around the confluence of the common bile duct with the main pancreatic duct. They encompass tumors of the pancreatic head (60% of the resected specimens), ampulla of Vater (20%), distal common bile duct (10%) and duodenal papilla (10%).¹ Thus these tumors are classified on the basis of their tissue of origin. While these tumours can be benign they are most commonly malignant and periampullary adenomas premalignant lesions. are well known Periampullary adenocarcinomas have a better prognosis than adenocarcinomas of the pancreatic head. Incidence of periampullary carcinoma is low, approximately 0.5-2% of all gastrointestinal malignancies and 20% of all tumours of the extrahepatic biliary tree.² The clinical picture of periampullary carcinoma is mainly related in the vast majority of patients to an early occurrence of jaundice, thus contributing to the early detection and a higher resection rate. The macroscopic appearance of periampullary carcinoma includes:

a) Intramural tumours: inside the ampulla, without any protrusion inside the duodenum;

b) Extramural tumours: Polypoid tumours protruding through the ampullary orifice into the duodenum,

Conclusion: Analysis of prognosis and duration of survival can be determined by the parameters studied here. Hence all such cases should be subjected to these analytical approach.

Key words: Periampullary Cancers, CA 19-9, Stage, Survival Outcome.

*Correspondence to:

Dr. Asaranti Kar, Associate Professor, Department of Pathology, S.C.B. Medical College, Cuttack, Odisha, India.

Article History:

Received: 10-05-2017, Revised: 21-05-2017, Accepted: 28-05-2017		
Access this article online		
Website: www.ijmrp.com	Quick Response code	

DOI: 10.21276/ijmrp.2017.3.3.075

c) Ulcerative cancers of the ampulla, which is associated with worst prognosis.³ While these tumours have different origin the complex regional anatomy dictates a common operative approach. Periampullary adenocarcinomas are best treated by pancreatoduodenectomy (PD). In the majority of higher centres, the surgical morbidity rate still remains as high as 30-40 %.⁴ An important observation is that in spite of similar peri-operative outcomes, the long term survival of patients varies greatly. Previous studies attempting to identify significant predictors of survival focus on relatively less risk factors. In order to extend the research in this field, a comprehensive analysis of 17 clinico-pathological variables was conducted for identification of predictive factors of survival in patients with periampullary cancer.

MATERIALS AND METHODS

The study was performed on patients with periampullary cancer, who were treated with PD or PPPD at Department of Surgery of S.C.B Medical College and Hospital, Cuttack, Odisha (India) between January 2014 and April 2017. Periampullary cancers including duodenal papilla cancer, bile duct cancer and ampullary

cancer were defined according to WHO classification of tumors [5]. All patients were diagnosed histopathologically by 2 experienced pathologists of the Department of Pathology, SCB Medical College, Cuttack. Operative notes were carefully reviewed to exclude any patient with a tumor arising from duodenum, intrapancreatic distal bile duct, exocrine pancreatic tissue or the endocrine pancreas. All patients provided written informed consent prior to the study.

Seventeen clinicopathological variables (age, sex, preoperative serum total bilirubin, preoperative serum carbohydrate antigen (CA) 19-9 level, operative procedures (PD or pylorus preserving pancreatoduodenectomy -PPPD), intraoperative blood loss, site of origin of tumor, size of tumor, International Union Against Cancer (UICC) pT factor, lymph node metastasis, UICC stage, histologic differentiation, pancreatic invasion, depth of infiltration, peripancreatic soft tissue invasion, perineural invasion and lymphovascular invasion) were recorded. Tumor was staged in pursuance with the UICC classification⁶⁻⁸, and differentiation grades were defined based on the criteria proposed by Albores-Saavedra et al. The patients were followed up and the 3 year survival rate was calculated. All data was tabulated in the master chart.

SL. NO.	CLINICOPATHOLOGIC VARIABLE	CUT-OFF	NUMBER OF PATIENTS	SURVIVAL RATE IN %
1	Age (years)	<50	6	55
	0,0,7	≥50	14	45
2	Sex	Male	13	56
_ ••••	Female	7	44	
3	Total billirubin (mg/dl)	<10	15	55
		≥10	5	33
4 CA 19-9	CA 19-9	<111	12	58
		≥111	8	38
5	Surgical procedure	Pancreatoduodenectomy	14	50
-		Pylorus preserving	6	56
		pancreatoduodenectomy		
6	Intraoperative blood loss (ml)	<600	15	53
		≥600	5	51
7	Site of origin	Ampulla	4	58
		Distal common bile duct	6	36
	Duodenal papilla	10	57	
8	Size (cm)	<2	6	65
	≥2	14	33	
9	Differentiation	Well	3	65
	Moderate	11	55	
	Poor	6	42	
10	Depth	Muscular layer	4	66
		Overall	16	46
11	Pancreatic invasion	Yes	11	38
		No	10	64
12	Peripancreatic soft tissue invasion	Yes	2	26
		No	18	55
13	Perineural invasion	Yes	3	27
		No	17	54
14	Vascular invasion	Yes	2	26
		No	18	54
15	Lymph node metastasis	Yes	4	16
		No	16	60
16	UICC pT factor	I and II	7	72
	-	III and IV	13	40
17	UICC Stage	I and II	14	60
		III and IV	6	30

Table 1: Clinicopathologic variables in periampullary carcinomas

Fig 1: Gross photograph of periampullary mass

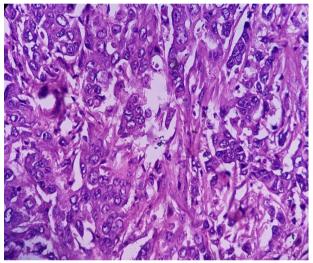


Fig 3: Moderately differentiated adenocarcinoma (40x)

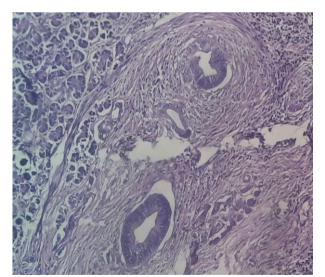


Fig 5: Peripancreatic soft tissue invasion (10x)

RESULTS

Total 20 patients were included in the study. The overall survival rate at 3 years was 52%. Age range was from 32 to 79 with an average of 56 years. 13 were males and 7 were females.(Table 1) 5 patients (25%) presented with serum bilirubin level more than 10 mg/dl and 8 patients (40%) presented with preoperative serum

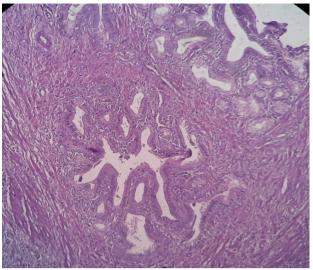


Fig 2: Well differentiated adenocarcinoma (10x)

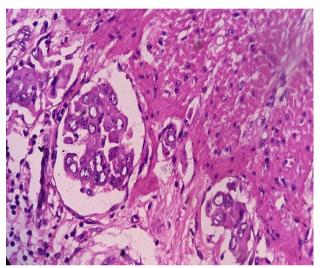


Fig 4: Vascular invasion (40x)

CA19-9 level more than 111U/ml. PD was performed in 70% patients and 30 % patients were treated with PPPD. 70% patients had tumor size more than 2cm (Fig 1). Site of origin of tumor was identified to be ampulla in 4 patients, duodenal papilla in 10 patients and distal bile duct in 6 patients. Tumor was well differentiated in 3 patients (15%-Fig 2), moderately differentiated (Fig 3) in 11 patients (55%) and poorly differentiated in 6 patients (30%).

11 patients had pancreatic invasion by the tumor and 2 patients showed peripancreatic soft tissue invasion. Perineural invasion was seen in 3 (15%) patients. According to UICC TNM staging, T1 and T2 lesions were found in 7patients (35%) ,T3 in 12 patients and T4 in only one patient. Lymph node metastasis was seen in 20% patients. Additionally 70% patients belonged to stage I-II and 30% to stage III-IV.

Furthermore, ampullary cancers, distant cholangiocarcinoma and duodenal papilla cancers did not significantly differ in CA19-9 level, differentiation degree and lymph node metastasis when they presented at the same stage (Tables 2 and 3). Different types of periampullary cancers at the same stage had similar biologic behavior, indicating that stage may be an important predictor of survival regardless of site of origin. Dudenal papilla cancers had a propensity for lymphovascular (Fig 4), periampullary soft tissue invasion (Fig 5) and perineural invasion.

SL. NO.	VARIABLE	CUT OFF	AMPULLA	DISTANT BILE DUCT	DUODENAL PAPILLA
1	CA 19-9 U/ml	<111	1	1	6
		≥111	1	2	3
2 Differentiation	Well	1	0	2	
		Moderate	2	1	4
		Poor	1	1	2
3	3 Lymph node metastasis	Present	0	0	2
		Absent	2	4	6
4 Lymphovascular invasion	Lymphovascular invasion	Present	1	0	0
		Absent	2	4	6
5 Perineural	Perineural invasion	Present	1	0	0
		Absent	3	4	6

Table 3: Biologic behavior of different tumor types in the same stages (Stages III and IV)

	U		71		,
SL. NO.	VARIABLE	CUT OFF	AMPULLA	DISTAL BILE DUCT	DUODENAL PAPILLA
1 CA 19-9 U/ml	CA 19-9 U/ml	<111	1	2	1
		≥111	0	0	2
2 Differentiation	Well	0	0	0	
		Moderate	0	2	2
		Poor	0	1	1
3	3 Lymph node metastasis	Present	0	1	1
		Absent	0	2	2
4 Lymphovascular invasion	Present	0	0	1	
		Absent	0	4	1
5 Perineural invasion	Perineural invasion	Present	0	0	2
		Absent	0	3	1

DISCUSSION

Due to the rarity of periampullary cancers, the paucity of specific papers and the absence of prospective trials no relevant data have been available for the scientific community till the last few years. Quite recently, some articles focused on diagnostic assessment^{9,10} and treatment modalities have been published thus filling a lot of gaps. But the prognostic factors are yet to be explored. Also the long term survival of patients with periampullary cancer varies considerably. So 17 clinicopathological variables were used in the study to identify the significant prognostic factors. The overall survival rate at 3 years was 52%.

Lymph node metastasis has been reported to be an important prognostic factor.¹¹ Gamagami et al. have reported that tumor differentiation is an independent prognostic factor in periampullary neoplasms.¹² In the present study well differentiated cancers had good prognosis than moderately differentiated ones, while poorly differentiated periampullary cancers had the worst prognosis. However according to Hatzaras et al. tumor differentiation is not an independent predictor of survival. The inconsistent results might be due to the relative subjectivity in determining differentiation of tumor. Limited sample size might be another reason.

Serum CA 19-9 has emerged as a valuable biomarker of pancreatic cancer and it has been proved that higher preoperative

serum CA19-9 level predicts poor survival in pancreatic cancer. However there are few studies on the prognostic value of CA19-9 in periampullary cancers. Gao Z et al. have suggested that periampullary cancer patients with preoperative serum CA 19-9 > 35 U/ml are prone to have a poorer survival.¹³ In the present study pre-operative serum level more than 111 U/ml predicted a poorer survival of periampullary cancers (Table -1).

Further noteworthy is the observation that ampullary cancers, distant cholangiocarcinoma and duodenal papilla cancers at the same stage were not different in terms of differentiation grade and lymph node metastasis in this study (Table 2 and 3). It indicates that biologic behavior may be an important predictive factor of survival in periampullary cancers amenable to resection regardless of site of origin. Various studies have compared PD with PPPD and have found no significantly difference in survival between them.¹⁴ However published literature has revealed that there is a better postoperative gastrointestinal quality of life in patients who have undergone PPPD in terms of appetite, nausea and diarrhea⁶ and some studies have shown that patients gain better nutritional recovery, weight gain, exocrine function as well as glucose metabolism function when the whole stomach is preserved. In this study patients who had undergone PPPD had better survival outcome than those with PD. Those with III AND IV stage of cancer had poor survival outcome.

Jaundice is an indicator of dismal prognosis in periampullary cancers.^{15,16} This study showed that preoperative total billirubin level more than 10 mg/dl indicated poor prognosis. It is speculated that jaundice may reflect the bile duct invasion and hepatoduodenal ligament infiltration. In this study lymph node metastasis was found to be associated with poor survival. Additionally in this study the frequency of lymph node metastasis is 18% in patients with ampulla of vater cancers which is much lower than previous reports (38-70%).^{2,7,8} This might be due to the higher rate of duodenal papilla cancer. The study is underpowered by the weakness of limited sample size. Thus better designed studies with more sample size is needed to validate the findings of this study.

CONCLUSION

The authors concluded from the study that prognosis in periampullary cancers is bad in males, in patients with raised billirubin (>10mg/dl) and raised preoperative CA 19-9 level (>111U/ml), larger tumor size, poorly differentiated ones, with lymph node metastasis and UICC higher stages. PPPD has benefit for survival. So PPPD might be a better choice than PD in periampullary cancers and should be practiced in all institutes for better survival outcome.

REFERENCES

 Kimura W, Futakawa N, Zhao B: Neoplastic diseases of the papilla of Vater. J Hepatobiliary Pancreat Surg 2004, 11:223–314.
Sobin LH, Gospodarowicz MK and Wittekind C. TNM classification of malignant tumours. John Wiley & Sons 2011.

3. Carter JT, Grenert JP, Rubenstein L, Stewart L, Way LW.Tumors of the ampulla of vater: histopathologic classification and predictors of survival. J Am Coll Surg 2008; 207: 210-18

4. Asari S, Matsumoto I, Ajiki T, Shinzeki M, Goto T, Fukumoto T and Ku Y. Perioperative management for pancreatoduodenectomy following severe acute pancreatitis in patients with peri-ampullary cancer: our experience with six consecutive cases. Surgery Today 2015; 45: 1-8.

5. Bosman FT, Carneiro F, Hruban RH and Theise ND. WHO classification of tumours of the di¬gestive system. World Health Organization 2010

6. Wenger F, Jacobi C, Haubold K, Zieren H and Müller J. Gastrointestinal quality of life after duodenopancreatectomy in pancreatic carcinoma. Preliminary results of a prospective randomized study: pancreatoduodenectomy or pylorus-preserving pancreatoduodenectomy. Chirurg 1999; 70: 1454-1459.

7. Sobin L and Wittekind C. International Union Against Cancer (UICC): TNM classification of malignant tumors 6th edition. New York: Wil¬ley-Liss; 2002.

8. Edge SB and Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol 2010; 17: 1471-1474.

9. El Hajj II, Cote GA. Endoscopic diagnosis and management of ampullary lesions. Gastrointest Endosc Clin N Am. 2013; 23: 95-109.

10. Azih LC, Broussar BL, Phadnis MA, Heslin MJ, Eloubeidi MA, Varadarajulu S, Arnolett JP. Endoscopic ultrasound evaluation in the surgical treatment of duodenal and periampullary adenomas. W J Gastroenterol 2013; 19: 511-15.

11. Sakata J, Shirai Y, Wakai T, Yokoyama N, Saka¬ta E, Akazawa K and Hatakeyama K. Number of positive lymph nodes independently affects long-term survival after resection in patients with ampullary carcinoma. Eur J Surg Oncol 2007; 33: 346-351.

12. Gamagami RA, Gilpin EA and Romeo O. Factors influencing survival after resection for periam¬pullary neoplasms. Am J Surg 2000; 180: 13-17.

13. Gao Z, Wang H and Cai Z. Diagnostic and prognostic values of CA 19-9 and CEA in periampul¬lary cancers. J Am Coll Surg 1999; 188: 415-420.

14. Iqbal N, Lovegrove R, Tilney H, Abraham A, Bhattacharya S, Tekkis P and Kocher H. A comparison of pancreaticoduodenectomy with pylorus preserving pancreaticoduodenectomy: a meta-analysis of 2822 patients. Eur J Surg Oncol 2008; 34: 1237-124.

15. Yokoyama N, Shirai Y, Wakai T, Nagakura S, Akazawa K and Hatakeyama K. Jaundice at presentation heralds advanced disease and poor prognosis in patients with ampullary carcinoma. World J Surg 2005; 29: 519-523.

16. Klempnauer J, Ridder GJ, Maschek H and Pi¬chlmayr R. Carcinoma of the ampulla of Vater: determinants of long-term survival in 94 re-sected patients. HPB Surgery 1998; 11: 1-11.

Source of Support: Nil. Conflict of Interest: None Declared.

Copyright: © the author(s) and publisher. IJMRP is an official publication of Ibn Sina Academy of Medieval Medicine & Sciences, registered in 2001 under Indian Trusts Act, 1882.

This is an open access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cite this article as: Pragyan Lisha Panda, Dilleswari Pradhan, Asaranti Kar, Priyadarshini Biswal, Pradeep Kumar Behera, Pranati Pradhan. Clinicopathologic Analysis of Periampullary Cancers as Predictors of Survival Outcome: A Hospital Based Study. Int J Med Res Prof. 2017; 3(3):371-75.

DOI:10.21276/ijmrp.2017.3.3.075