

Cardiopulmonary Efficacy of a Single Dose of Sildenafil in Patients with Chronic Heart Failure

Osama Saad Arafa¹, Hesham Mohamed Abo Elenein¹, Neima Ali El Melegy¹, Hesham Drwesh², Ahmed Mohamed El Saied¹

¹Department of Cardiology, Benha University, Banha, Al Qalyubia Governorate, Egypt.

^{2*}Critical Care Department, Thedoor Bilharz Research Institute (TBRI), Giza Governorate, Egypt.

ABSTRACT

Back Ground: Chronic Heart Failure is Associated with secondary hypertension, impaired vascular reactivity and permeability and reduced alveolar capillary membrane conduction. Sildenafil is a potent and selective inhibitor of cGMP phosphodiestrase 5 which is responsible for degradation of cGMP, Stabilisation of cGMP result in increasing NO at the tissue level leading to pulmonary vessel vasodilatation.

Methods: This study was conducted in Benha University Hospital, it included 30 patients with chronic heart failure, they were divided into two groups, Group (1) was the control group consisted of 15 patients and received the standard therapy, Group (2) was the active group consisted of 15 patients received single dose of Sildenafil 50 mg in addition to standard therapy.

Results: In current Study the mean pulmonary artery systolic pressure (PASP) before giving Sildenafil was 58.4 mmhg and after two hours of use Sildenafil it became 51.7 mmhg. Also Sildenafil caused significant improvement of peak minute ventilation (VE), peak oxygen uptake (VO2), peak carbon dioxide output (VCO2).

Conclusion: So Sildenafil is Safe in Stable congestive heart failure as it reduces pulmonary hypertension, improve exercise

performance, ventilatory efficiency and oxygen uptake kinetics.

Keywords: Sildenafil, Heart Failure, Pulmonary Hypertension, Oxygen Uptake.

Abbreviations

Pulmonary Artery Systolic Pressure (PASP); Peak Minute Ventilation (VE); Peak Oxygen Uptake (VO2); Peak Carbon Dioxide Output (VCO2); Congestive Heart Failure (CHF); Cardiac Output (cop).

*Correspondence to:

Dr. Hesham Drwesh,

Critical Care Department,

Thedoor Bilharz Research Institute (TBRI),

Giza Governorate, Egypt.

Article History:

Received: 04-01-2019, Revised: 03-02-2019, Accepted: 26-02-2019

Access th	Access this article online			
Website: www.ijmrp.com	Quick Response code			
DOI: 10.21276/ijmrp.2019.5.2.002				

INTRODUCTION

Despite multiple pharmacological and non-pharmacological strategies for management of chronic heart failure most patient will experience some limitation of their exercise capacity.¹

Multiple Mechanisms seem to interfere with exercise performance in CHF including central and peripheral vascular components. In particular pulmonary hypertension as an important predictor of fuctional disability.

Inhibition of 5 phosphodiestrase by Sildenafil has proven to be beneficial in different Scenarios where endothelial function and vascular tone can be positively influenced.²

Similarly, acute administration of Sildenafil has been shown to improve parameters of endothelial, pulmonary, and cardiac function in patients with CHF.³

AIM OF THE STUDY

The aim of the present study is to investigate whether a single oral dose 50 mg of Sildenafil could improve exercise performance, ventilatory efficiency, oxygen uptake kinetics, pulmonary hypertension after two hours in outpatients with stable CHF.

PATIENTS AND METHODS

This study was conducted at Benha Univercity Hospital during the period from October 2008 till May 2009. It Included 30 patients who had CHF and received Standard medical therapy. These patients were divided into two groups.

Group (1): included 15 patients who received only the standard therapy.

Group (2): included 15 patients who received a single oral dose of Sildenafil 50 mg in addition to the standard therapy.

Inclusion Criteria

- 1. Patients had chronic Left ventricular systolic dysfunction (LVEF 30% 50%) and received the standard therapy.
- 2. All included patients were more than 20 years and clinically stable for at least 2 months and able to perform exercise.

Exclusion Criteria

- 1. Systolic arterial pressure less than 90 mmhg.
- 2. Concomitant use of Nitrates.
- 3. History of intolerance to Sildenafil.
- 4. Patients with Advanced Disease (NYHA class 4).

All included patients undergone careful history taking, physical examination and Transthoracic Echocardiography with measurement of PASP and Right Atrial Pressure.

Table 1: Demographic baseline and clinic characters

		No.	%
Age	>60y	11	36%
	<60y	19	64%
Sex	Male	20	66%
	Female	10	33%
HTN	Yes	13	43%
	No	17	57%
DM	Yes	17	56%
	No	13	44%
Smoking	Yes	17	56%
	No	13	44%

Table 2: Aetiology of heart failure of studied patients

Aetiology	No.	%
Ischemic	14	46%
HTN	9	30%
Valvular	3	10%
Other	4	13%

Table 3: ECG rhythm of studied patients

	Gro	up II	Gr	oup I
	No	%	No	%
Sinus rhythm	11	73%	13	38%
AF	2	13%	4	26%

Table 4: Baseline characters of Group I

		No	%
Age	>60y	6	40%
	<60y	9	60%
sex	Male	10	66%
	Female	15	44%
HTN	Yes	8	53%
	No	7	47%
DM	Yes	8	53%
	No	7	47%
Smoking	Yes	8	53%
	No	7	47%

Table 5: Baseline characters of Group II

		No	%
Age	>60y	5	33%
	<60y	10	77%
sex	Male	10	66%
	Female	5	44%
HTN	Yes	5	33%
	No	10	77%
DM	Yes	9	60%
	No	6	40%
Smoking	Yes	9	60%
	No	6	40%

Table 6: Comparison between Group I Group II

	GROL PS					
Variable	Grou	up I	Gro	up II	T	р
	Mean	Sd	Mean	sd		
Age	58.60	7.09	58.93	8.67	0.1	>0.05
SPB	133.27	16.08	130.6	21. 86	0.3	>0.05
HR	78.40	9.46	78.80	13.19	0.2	>0.05
LVEF	37.60	4.54	37.46	6.27	0.1	>0.05
LVDD	73.06	8.82	72.53	12.14	0.2	>0.05

Table 7: Functional class of studied patients

Functional class	All patients	Group I	Group II	Р
NYHA1_11	27	13	14	>0.05
NYHA 111	3	2	1	>0.05

Table 8: Medications Used by studied patients

	•	•	
Functional class	All patients	Group I	Group II
Diuretics	30	15	15
Beta_blockers	27	13	14
ACE_inhibitor	30	15	15
Digoxin	25	10	15

Table 9: Comparison between Group I Group & II after two hours

	GROL P	S				
Variable	Gro	ир I	Gro	up II	T	р
	Mean	Sd	Mean	sd		
SPB	128.47	16.44	125.2	21.86	0.65	>0.05
HR	77	8.22	84.76	10.79	0.37	>0.05
LVEF	37.60	4.54	39.66	7.62	0.1	>0.05

Table 10: Comparison between Group I & Group II as regard to PASP

	GROL PS						
Variable	Group I Group II t p						
	Mean	Sd	Mean	sd			
PASP before	58.80	9.90	58.40	10.62	0.1	>0.05	
PASP after 2 hours	58.20	9.960	51.70	8.50	2.01	<0.05	

Table 11: Comparison between Group I Group & II baseline Maximal cardiopulmonary exercise test parameters

·			GROL F	PS .	•	
Variables	Group	l n= 15	Group	II n= 15	Т	Р
	Mean	SD	Mean	SD		
VE peak, L/ min	49.40	8.09	49.93	8.17	0.8	>0.05
Vo2 peak, ml/kg/min	19.47	3.44	19.20	4.16	0.2	>0.05
Vco2 peak, L/min	19.80	3.49	17.53	2.29	2.1	< 0.05
VE/voc2 slope	45.15	4.11	39.85	5.30	3.6	< 0.05
T ^{1/2} VE (min)	2.51	0.64	2.19	0.34	1.7	>0.05
T 1/2 Vo2 (min)	2.57	0.52	2.01	0.33	3.5	< 0.05
T 1/2 Vco2 (min)	2.45	0.73	2.02	0.29	2.3	< 0.05

Table 12: Comparison between Group & I Group II Maximal cardiopulmonary exercise test parameters after 2 hours

Variables	GROL PS							
	Group I n= 15		Group II n= 15		Т	Р		
	Mean	SD	Mean	SD				
VE peak, L/ min	50.10	8.24	51.53	8.08	2.2	< 0.05		
Vo2 peak, ml/kg/min	20.00	3.39	20.87	2.24	2.4	< 0.05		
Vco2 peak, L/min	19.87	3.20	16.2	2.73	2.1	< 0.05		
VE/voc2 slope	45.79	3.79	36.48	2.73	5.5	< 0.05		
T 1/2 VE (min)	2.47	0.55	1.99	0.27	1.1	>0.05		
T 1/2 Vo2 (min)	2.63	0.55	1.87	0.31	3.7	< 0.05		
T 1/2 Vco2 (min)	2.44	0.74	1.82	0.28	2.1	< 0.05		

Table 13: Comparison between Group II before and after two hours

Variables	GROL PS							
	Group I n= 15		Group II n= 15		T	Р		
	Mean	SD	Mean	SD				
VE peak, L/ min	49.93	8.17	51.53	8.08	2.14	< 0.05		
Vo2 peak, ml/kg/min	19.2	4.16	20.87	4.24	2.1	< 0.05		
Vco2 peak, L/min	17.53	2.29	16.2	2.73	2.1	< 0.05		
VE/voc2 slope	39.85	5.30	36.48	3.24	2.1	< 0.05		
T ^{1/2} VE (min)	2.19	0.34	1.99	0.27	2.1	< 0.05		
T 1/2 Vo2 (min)	2.0	0.33	1.87	0.31	2.14	< 0.05		
T 1/2 Vco2 (min)	2.0	0.29	1.82	0.28	2.1	< 0.05		

RESULTS AND DISCUSSION

It is clear that nitric oxide (NO) secretion by pulmonary arterial and venous endothelium plays an important role in lung physiology.⁴

At the lung level, congestive heart failure (CHF) is typically associated with secondary hypertension, impaired vascular reactivity and permeability and reduced alveolar capillary membrane conductance.⁵

Sildenafil is specific inhibitor for phosphodiestrase 5 that increases Nitric Oxide availability and NO mediated vasodilatation in CHF Patients.³

In a heamodynamically invasive acute study, Lepore and coworkers showed that, Sildenafil alone, inhaled NO, and combination of both produced positive and synergistic effect in terms of reducing pulmonary artery systolic pressure (PASP) and increasing cardiac output (COP) in patients with CHF dependent pulmonary hypertension.⁶

Also Sildenafil was found to restore NO availability by promoting cyclic guanosine monophosphate accumulation via inhibition of phosphodiestrase activity.⁷

Recently demonstrated in an elegantly Last, Lewis and colleages designed study that acute use of Sildenafil improves exercise capacity and haemodynamics in patients with CHF. Possibly through a reduction in right ventricular afterload, secondary to

reduced pulmonary artery pressure values.⁸ Patients with CHF peculiarly exhibit an abnormal ventilatory response to exercise characterized by a steep VE/ VCO2 slope, the increase in this slope may be multifactorial through increase of the ventilation required to overcome a large dead space, augmented central drive to ventilation originating from J receptors activation in consequence of the interstitial space distension, bicarbonate buffering of accumulating lactic acid, reduced perfusion of ventilating lung, abnormal chemosensitivity, overactive ergoreceptors, and abnormal autonomic and baroreceptor control of the circulation.⁹

A better exercising muscle perfusion may also explain well the benefits of Sildenafil on Peak VO2.10

SUMMARY & CONCLUSION

Sildenafil is Safe and beneficial in patients with stable Chronic Heart Failure in terms of reducing pulmonary hypertension, improve exercise performance, ventilatory efficiency, and oxygen uptake kinetics.

ACKNOWLEDGMENTS

Department of Cardiology, Banha University.

REFERENCES

- 1. L Gullestad L, C Menhenke, T Aarsland et al. Effect of metoprolo on exercise tolerance in CHF. substudy to MERIT HF trial EUR J Heart Fail 3 (2001) pp. 463 –68.
- 2. JPJ Halox, KRA Nour, G Zalos et al. The effect of Sildenafil on human vascular function, platelet activation and myocardial ischaemia, J Am Coll Cardiol 40 (2002), pp. 1232 40.
- 3. Katz SD, Balidemaj K, Homma S et al. Acute type 5 phosphodiestrase inhibition with Sildenafil enhances flow mediated vasodilatation in patients with CHF. J Am Coll Cardiol 40. (2000), 36: 845 51.
- 4. Zapol WM, Rimar S, Grillis N et al. Nitric Oxide and the lung. Am J Respir Crit care Med (1994): 149:1375 80.
- 5. Guazzi M, Agostoni P, Guazzi MD. Alveolar capillary gas exchange and exercise performance in heart failure. Am J Cardiol (2001): 88:39 44.
- 6. J.J Lepore, A Maroo, L.M Begatello et al. Heamodynamic effect on Sildenafil in patients with congestive heart failure and pulmonary hypertension. Chest 2005; 127; 1647 -53.
- 7. Al Burnett. Phosphodiestrase 5 mechanisms and therapeutic applications. Am J Cardiol 2005;96; 29 M 31 M.
- 8. G.D. Lewis, J Lashmann, J Camuso et al. Sildenafil improves exercise haemodynamics and oxygen uptake in patients with systolic heart failure. Circulation 2007; 115;59 -66.

- 9. Johnson RL Jr. Gas exchange efficiency in congestive heart failure 2. Circulation 2001:103:916 8.
- 10. E.A. Bocchi, G.Guimaraes, A Mocelin et al. Sildenafil effect on exercise neurohormonal activation and erectile dysfunction in congestive heart failure. Circulation 2002;106; 1097 1103.

Source of Support: Nil.

Conflict of Interest: None Declared.

Copyright: © the author(s) and publisher. IJMRP is an official publication of Ibn Sina Academy of Medieval Medicine & Sciences, registered in 2001 under Indian Trusts Act, 1882. This is an open access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cite this article as: Osama Saad Arafa, Hesham Mohamed Abo Elenein, Neima Ali El Melegy, Hesham Drwesh, Ahmed Mohamed El Saied. Cardiopulmonary Efficacy of a Single Dose of Sildenafil in Patients with Chronic Heart Failure. Int J Med Res Prof. 2019 Mar; 5(2):6-9. DOI:10.21276/ijmrp.2019.5.2.002