

Prevalence of Septicaemia in Patients Admitted in Medicine Department Of a Tertiary Care Hospital

J K Chhaparwal¹, Navendra K Gupta^{2*}

¹Associate Professor, ^{2*}Assistant Professor, Department of Medicine, Ananta Institute of Medical Science and Research Center, Rajsamand, Rajasthan, India.

ABSTRACT

Background: Bloodstream infections are important causes of mortality and morbidity. Rapid empiric antibiotic therapy is often needed. Knowledge of epidemiological data of common pathogens and their antibiotic sensitivity pattern is needed for rapid therapy.

Methods: This study was done to analyze the common causes of septicaemia and their antibiotic sensitivity pattern from the Department of Medicine, Ananta Institute of Medical Science and Research Center, Rajsamand. Isolates were identified using bacteriological and biochemical methods and antibiotic sensitivity was done using the Kirby-Bauer disc diffusion method.

Results: This study showed that of the 145 patients examined 40 (27.58%) had septicaemia. 31-45 years age group patients constituted the greatest percentage of infected subjects (n=55) followed by patients aged between 46-60 years (n=38). Grampositive bacteria were encountered more often than gram negative bacteria. Among the gram-positive bacteria, majority isolated were *S. epidermiidis*; followed by *S. aureus*.

Conclusion: Majority of the organism isolated were from Gram positive category, in which *S. epidermiidis* was the most isolated.

Keywords: Septicaemia, Infection, Emergency.

*Correspondence to:

Dr. Navendra K Gupta,

Assistant Professor, Department of Medicine, Ananta Institute of Medical Science,

Rajsamand, Rajasthan, India.

Article History:

Received: 28-05-2017, Revised: 12-07-2017, Accepted: 23-08-2017

Access this article online		
Website: www.ijmrp.com	Quick Response code	
DOI: 10.21276/ijmrp.2017.3.5.080		

INTRODUCTION

Septicaemias are important causes of mortality and morbidity and are among the most common healthcare associated infections.1 Illnesses associated with bloodstream infections range from selflimiting infections to life threatening sepsis that require rapid and aggressive antimicrobial treatment.2 A wide spectrum of organisms has been described and this spectrum is subject to geographical alteration. Patients who are granulocytopenic or inappropriately treated may have a mortality rate that approaches 100%.1 Moreover, fatalities among patients infected with Gramnegative bacilli are higher than those among patients who have Gram-positive cocci as causative agents of their bacteraemia.3 Worldwide; emergence of antibiotic resistance in all kinds of pathogenic bacteria is a serious public health issue. It is associated with greater hospital mortality and longer duration of hospital stay, thereby increasing health care costs.4 Also, colonization and infection with antibiotic-resistant bacteria has made the therapeutic options for infection treatment extremely difficult or virtually impossible in some instances.5 There are many reasons for this alarming phenomenon, including increasing antibiotic use and misuse in humans, animals and agriculture, clustering and overcrowding and poor infection control.6

Due to the high mortality and mobility associated with septicaemia, antimicrobial therapy in most cases is initiated empirically before the results of blood culture and antimicrobial susceptibility pattern of the isolates are available.¹

Knowledge of local antimicrobial resistance patterns from accurate bacteriological records of blood culture results is needed to provide guidance towards an empirical therapy before sensitivity patterns are available. Bacteraemia is usually caused by a wide spectrum of bacteria with varying antimicrobial susceptibility pattern.⁷

Bacteraemia often require prompt diagnosis and effective treatment to prevent death and complications from septicaemia. Physical signs and symptoms are usually useful in identifying patients with septicaemia and other non-localized infections but these have limited specificity.⁸

Bacteriological culture to isolate the offending pathogen and determine its antimicrobial sensitivity pattern has remained the mainstay of definitive diagnosis of septicaemia. In most cases of suspected septicaemia antimicrobial therapy is always initiated empirically because bacteriological culture results take about a week to be available.

Epidemiological data on common blood stream pathogens and their antimicrobial sensitivity pattern is thus very important to make the right choice of empiric therapy.

MATERIALS AND METHODS

This study was conducted in the Department of Medicine, Ananta Institute of Medical Science and Research Center, Rajsamand. All the subjects were patients suspected clinically for septicaemia and sent to the bacteriology laboratory for blood culture by physicians. Written informed consent was taken before the study. The blood culture bottles were immediately incubated aerobically at 35°c for 24 hrs.

After 24hrs, bottles were checked for positive cultures (growth on the agar slope and/or turbidity in the broth). Negative cultures were reincubated and checked daily for up to three weeks unless growth occurred. Before re-incubation, the slope was re-inoculated by tippling the bottle.

Antibiotic susceptibility testing was done on MH using the Kirby-Bauer disc diffusion technique. 11 Antibiogram for Streptococcus species was done on blood agar.

Table 1: Age Distribution of Patients with Septicaemia

•		•	
Age ranges	No clinically	No (%) of	
(years)	examined	positive culture	
15-30	22	6	
31-45	55	16	
46-60	38	12	
61-75	25	5	
>76	5	1	
Total	145	40	

Table 2: The Type and Distribution Of Bacteria Isolates

Bacteria Isolates	Total
S.aureus	10
S. epidermiidis	12
S. sapropihyticus	1
Streptococcus sp.	2
S. typhi	2
Salmonella spcies	2
K. pneumonia	2
E. coli	1
Enterobacter sp.	2
Pseudomonas sp.	1
Acinectobacter sp.	1
Proteus mirabilis	1
Non enterobacteriacaece	1
Gram positive bacilli	1
Klebseilla oxytoca	1
Total	40

RESULTS

Of the 145 patients examined for septicaemia, positive culture was found in 40 (27.58%). Age distribution of the patients is shown in Table 1.

Majority of the infected patients were found in the 31-45 years of age group (n=55) followed by 46-60 age group (n=38) and least in >76 age group. Maximum no. of positive culture was found in 31-45 age group followed by 46-60 years age group.

The type and pattern of bacteria isolates in the various age groups is shown in **Table 2**. Gram-positive bacteria were encountered more often than gram negative. Among the gram-positive bacteria, Staphylococci constituted most followed by Streptococci species. Among gram-negative bacteria, enterobacteriacea and non-fermenting bacteria were more frequent.

DISCUSSION

This study is a record of septicaemia in patients attending the Medicine department of Department of Medicine, Ananta Institute of Medical Science and Research Center, Rajsamand. Results showed that septicaemia was present in 27.58% of patients examined. Gram positive bacteria were encountered more than gram-negative bacteria, and the most frequent invasive bacteria were Staphylococcus epiderimidis, S. aureus, Salmonella typhi and Klebseilla species.⁶

These results are similar to those obtained in some previous studies⁹: Bacteremia was identified in 552 (45.9%) of 1201 children in Nigeria; 53.4% of the infections were due to gram positive bacteria and 46.6% due to gram negative bacteria. The most frequent isolate was S. aureus (47.7%) followed by coliforms (23.4%), unidentified gram-negative rods (8.0%), Pseudomonas aeruginosa (5.8%), Streptococcal species (4.7%) and Chromobacteria species (4.5%). Hill et al.⁷ also reported an incidence of 34% (297) out of 871patients studied. The isolates were dominated by gram-positive bacteria.

Results have also shown a very high incidence of septicaemia among 31-45 age group. It is also in accordance with results from Laos in which 69.2% of Staphylococci were form majority bulk. 12 The rate of isolation also reduced with increasing age as seen in this study. However, while this study represents real life clinical practice in the hospital in which it was conducted, our approach had some limitations. The primary reason for requesting the blood culture from patients is still not clear.

CONCLUSION

This study shows that *Staphylococcus epidermidis*, *S. aureus* and *Salmonella typhi* are the living cause of bacteraemia among patients in the locality.

REFERENCES

- 1. Atul G., Anupuba S., Taya G., Goyal R.K. and Sen M.R. (2007). Bacteriological Profile and Antimicrobial Resistance of Blood Culture Isolate from a University Hospital. J, Indian Acad of Clin Med; 8(2)139-43.
- 2. Young L.S.(1995) in Mandell G. L Benett J.E Dolin R. Principle and Practice of Infectious diseases. Churchill Livingstone.46:690-705.
- 3. Fuselier P.A., Garcia L. S. and Procop. G.W (2002). Bloodstream infections. In Betty A.F., Daniel F.S., Alice S.W. eds. Baily and Scott's Diagnostic microbiology. Mosby 865-83.
- 4. Gangoue P.J., Sinata K.S., Ngassam P., Adiago D., and Ndumbe P. (2006). Antimicrobial Activity Against Gram-Negative Bacilli from Yaounde Central Hospital, Cameroon. Afr Health Sci 6(4) 232-235.

- 5. Collignon P.J.(2002). Antibiotic Resistance. Med J Aust 177(6):325-9.
- 6. Kholy A., Baseem H., Hall G.S., Procop G.W. and Longworth D.L.(2003). Antimicrobial Resistance in Cairo, Egypt 1999-2000: a survey of five hospitals. J Antimicrob Chemother 51(3):625-30.
- 7. Hill P.C., Onyeama C.O., Ousman S., Amegau S., Naomi S. and Dokor S. (2007). Bacteraemia in Patients Admitted to an Urban Hospital in West Africa. BMC Infect Dis 7:1471-2334.
- 8. Adejuyigbe E.A., Adeodu O.O, Ako N.K., Taiwo O and Owa J.A (2001). Septicaemia in High Risk Neonates at a Teaching Hospital in Ile Ife. East. Afr Med J. 789:590-3.
- 9. Meremikwu M. M., Nwachukwu C.E., Asuquo A.E., Okebe J.U. and Utsalo S.J.(2005). Bacterial isolates from blood cultures of children with suspected septicaemia in Calabar, Nigeria (2005) BMC Infect Dis. 5: 110.
- 10. Konemann, W.E., Allen, S. D., Dowell, V. R., Janda, W. M., Sommers, H. M. Winn, Jr.W. C. (1988). Color Atlas and Textbook of Diagnostic Microbiology (3rd edn) J.P. Lippincott Co. Philadelphia. Pp 89-156. Accessed on the 15-09-2010
- 11. Tenover, F.C. Implementation of NCCLS Antimicrobial Susceptibility Testing Standard. wwwn.cdc.gov/cliac/pdf/Add enda/cliac0904/Addendum_W.pdf

12. Rattanaphone P., Simaly P D., Soukaloun B.R and Vimone S.(2006). Causes of Community-Acquired Bacteraemia and Patternns of Antimicrobial Resistance in Vienttiane, Laos. J Trop Med 234:789-92.

Source of Support: Nil.

Conflict of Interest: None Declared.

Copyright: © the author(s) and publisher. IJMRP is an official publication of Ibn Sina Academy of Medieval Medicine & Sciences, registered in 2001 under Indian Trusts Act, 1882.

This is an open access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

Cite this article as: J K Chhaparwal, Navendra K Gupta. Prevalence of Septicaemia in Patients Admitted in Medicine Department Of a Tertiary Care Hospital. Int J Med Res Prof. 2017 Sept; 3(5):413-15. DOI:10.21276/ijmrp.2017.3.5.080