Assessment of Patients Associated with Implant Failure in Orthopaedic Surgery: A Retrospective Study

Yusuf Ali Deoda¹, Prashant Garhwal²

¹M.S., (Orthopedics), Principal Specialist, Department of Orthopedics, Government S K Hospital, Sikar, Rajasthan, India. ²M.S., (Orthopedics), Junior Specialist, Department of Orthopedics, Government S K Hospital, Sikar, Rajasthan, India.

ABSTRACT
Background: Trauma may differ from low velocity to high to very high velocity varying the radiological and clinical profile in each case. Implant failure elevates patient’s morbidity, prolongs the healing process and increases the management cost. The aim of the present study was to patients associated with implant failure in orthopaedic surgery.

Materials and Methods: The subjects presenting to OPD of Department of Orthopedics, Government S K Hospital, Sikar, Rajasthan (India) with the complain of fractures of long bones managed in past, in cases where the primary implant underwent failure to achieve the concerned outcome and repeated surgery was needed were enrolled in the study. The subjects were categorized into three groups- plate, unlocked nail and locked intermedullary nails. The data thus obtained was arranged in a tabulated form and analyzed using SPSS software.

Results: Out of these there were 30 cases amongst males and 20 cases amongst females. The mean age of the subjects was 37.22+/-5.3 years. There were 21 cases (42%) of failed plates, 17 cases (34%) of unlocked nails and 12 cases (24%) of locked nails.

Conclusion: In this study there were 50 cases of implant failure. The maximum failure incidence was that seen with the plates due to their superficial location.

Keywords: Orthopaedic, Implant, Failure.

Correspondence to:
Dr. Prashant Garhwal, Junior Specialist, Department of Orthopedics, Government S K Hospital, Sikar, Rajasthan, India.

Article History:
Received: 15-12-2018, Revised: 10-01-2019, Accepted: 27-01-2019

INTRODUCTION
Long bones fractures are commonly encountered in Orthopaedic surgery. They occur as a result of significant trauma and are frequently related with significant soft tissue damage. Trauma may differ from low velocity to high to very high velocity varying the radiological and clinical profile in each case. Frequency of trauma associated surgeries has elevated in order to achieve early rehabilitation and good excellence of life. The implants are used to establish stability to fractured segment of bone and maintaining reduction and thus aiding in reducing fracture condition. Orthopaedic surgeons are using a variety of implants since past. Some implants do not show good patient compatibility that lead to non-union and infection amongst few cases. They are manufactured with different kinds of materials like cobalt-chromium, stainless steels, titanium and other alloys that allow biocompatibility, resistance to corrosion, mechanical strength and are cost effective.¹² Implant failure elevates patient’s morbidity, prolongs the healing process and increases the management cost. An implant failure mostly leads to re-fracture that complicates the Process of healing and leads to a more complicated second Surgery. In majority of these patients mechanics of fracture, implant design and surgical treatment are to be blamed. The aim of the present study was to patients associated with implant failure in orthopaedic surgery.

MATERIALS AND METHODS
The subjects presenting to OPD of Department of Orthopedics, Government S K Hospital, Sikar, Rajasthan (India) with the complain of fractures of long bones managed in past, in cases where the primary implant underwent failure to achieve the concerned outcome and repeated surgery was needed were enrolled in the study. The study was approved by the institutional ethical board and all the subjects were informed about the study and a written consent was obtained from them in their vernacular language. The failure to achieve the desired union could be attributed to implant based factors; like breakage, bending, reaction of metal, patient induced factors like rapid ambulation, excessive than weight, poor hygienic practices, non-compliant to the instructions or the surgeon oriented risk factors or an amalgamation of the above factors. The subjects with failure of implant were enrolled and retrospective analysis for evaluating
the implant failure. After selection of the subjects, a complete
history including the mode of trauma, related injuries and
illnesses, post-operative incidents like range of motion, initiation
of ambulation and weight bearing before the bone healing. The
subjects were categorized into three groups- plate, unlocked nail
and locked intermedullary nails.
The data thus obtained was arranged in a tabulated form and
analyzed using SPSS software.

<table>
<thead>
<tr>
<th>Group</th>
<th>Frequency (n=50)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plates</td>
<td>21</td>
<td>42</td>
</tr>
<tr>
<td>Unlocked nails</td>
<td>17</td>
<td>34</td>
</tr>
<tr>
<td>Locked nails</td>
<td>12</td>
<td>24</td>
</tr>
</tbody>
</table>

The data thus obtained was arranged in a tabulated form and
analyzed using SPSS software.

<table>
<thead>
<tr>
<th>Implant group</th>
<th>Plates</th>
<th>Unlocked nails</th>
<th>Locked nails</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infection</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>14% (n=7)</td>
</tr>
<tr>
<td>Bending</td>
<td>3</td>
<td>10</td>
<td>-</td>
<td>26% (n=13)</td>
</tr>
<tr>
<td>Loosening</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>18% (n=9)</td>
</tr>
<tr>
<td>Fatigue fracture</td>
<td>10</td>
<td>3</td>
<td>8</td>
<td>42% (n=21)</td>
</tr>
</tbody>
</table>

RESULTS
In the present study, there were 50 cases of implant failure. Out of
these there were 30 cases amongst males and 20 cases amongst
females. The mean age of the subjects was 37.22+/-5.3 years.
Table 1 illustrates the frequency of failed implant. There were 21
cases (42%) of failed plates, 17 cases (34%) of unlocked nails and
12 cases (24%) of locked nails. There were least failure rate
was that of locked nails.
Table 2 shows the reasons of failure amongst the subjects. There
were 14% cases of infection, 26% cases of bending, 18% cases of
loosening and 42% cases of fatigue fracture. Bending was
observed in 10 cases of unlocked nails. Fatigue fracture was
observed in 10 cases of plates. 8 cases of locked nails also
demonstrated fatigue fracture. Infection was observed in 2 cases
of plates, 2 cases of unlocked nails and 3 cases of locked nails.

DISCUSSION
With every management and implant placement in Orthopaedic
surgery there begins a race amongst the implant failure and
healing course of fracture. Implant failure can be seen in the form
of deformation, corrosion or fatigue fracture. Mechanical implant
failure can be due to repetitive stress loading. In nonappearance
of union even the hardest metallic device and finest designs of
implants are expected to fail. Technical considerations of failure of
implant have been explored in different studies. As per the
laboratory investigations from two different studies in Azevedo,
Brazil and Amel Farad H, iran, productions did not track the

REFERENCEs
1. Disegi, J.A., Eschbach, L.: Stainless steel in bone
3. David J. Dandy, Dennis J. Edwards. Essential Orthopaedics
45 & 77.
Nokes, eds. Engineering Theory in Orthopaedics: An

Source of Support: Nil. Conflict of Interest: None Declared.

Copyright: © the author(s) and publisher. IJMRP is an official publication of Ibn Sina Academy of Medieval Medicine & Sciences, registered in 2001 under Indian Trusts Act, 1882. This is an open access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.